MARK SCHEME for the May/June 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0607	42

Abbreviations

cao	correct answer only
	2
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

nfww not from wrong working

soi seen or implied

1	(a) (i)	40 000	3	M2 for 76 000 ÷ 1.9 oe or M1 for 76 000 = 190% oe soi
	(ii)	521 284 cao	3	M2 for 76000×1.9^3 or 40000×1.9^4 oe or M1 for 76000 (or <i>their</i> 40000) $\times 1.9^k$, $k \neq 1$ oe seen
	(b)	2035	2	M1 for 76 000 (or <i>their</i> (a)(i) or <i>their</i> (a)(ii)) $\times 1.9^k$ = (or > or \ge) 10 000 000 seen $k \ne 1$ or evidence of at least 2 correct trials
2	(a)	Rotation [Anticlockwise] 90° oe [About] (0, 0) oe	1 1 1	Combinations of transformations – lose all 3 marks
	(b)	$\begin{pmatrix} 7\\k \end{pmatrix}$	1	any k
		$y = \frac{1}{2}k + 3$	1	Must be $\frac{1}{2}$ their k from vector
	(c)	Triangle at (1, 2), (2, 2), (1, 6)	2	SC1 for stretch s.f. 2 with $y = 1$ invariant or triangle at (2, 1), (4, 1), (2, 3) i.e. y-axis invariant
3	(a)	82.8 or 82.83	3	B1 for 9 h 25 m oe or 9.417 oe or 565 [min] M1 for 780 ÷ 9.416 (or <i>their</i> 9 h 25m converted to h)
	(b)	58.2 or 58.23 to 58.24 cao	3	M1 for 520 ÷ 105
				M1 for <i>their</i> 9.41666 – <i>their</i> (520 ÷ 105) or for <i>their</i> 565 – <i>their</i> 520 ÷ 105 × 60
	(c)	99.96 cao	4	M2 for $\frac{520}{100} \times 6 + \frac{their 260}{100} \times 8$ soi by 52 or $31.2 + 20.8$
				or M1 for either, soi by 31.2 or 20.8
				M1 for <i>their</i> 52 × 1.63 soi by 84.76

[Page 3	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – May/June 2015			0607	42
4	(a)	Good curve with x intercept reasonably placed and maximum reasonably placed on y-axis and minimum in 1st quadrant	2	B1 for basic cubic shape	(max before	min)
	(b)	(0, 6) (2, 2)	1 1	SC1 if answers reversed		
	(c)	2 < <i>k</i> < 6	2FT	FT <i>their y</i> values from (b) SC1 for $2 \le k \le 6$ or for $2 \le k \le n$ or $n \le k \le 6$ or for $2 \le k \le 6$ or $n \le k \le 6$ or for $2 \le x \le 6$	< 6	
	(d)	Rotational [Order] 2 [About] (1, 4)	1 1 1			
	(e)	$x^{3}-3x^{2}+4 \text{ or } (x-2)(x-2)(x+1)$	1			
5	(a)	5 points plotted correctly	2	B1 for 3 or 4 correct		
	(b)	Positive	1	Ignore comments on stree	ngth	
	(c) (i)	63.6	1			
	(ii)	42	1	Accept 42 000		
	(d)	1.04x - 24.4	2	or $a = 1.044, b = -24.4$ B1 for $y = ax + b$ with ei or SC1 for $[1.[0]]x - 24$		rrect
	(e)	58 800 or 58 790 to 59 150	1FT	FT from <i>their</i> equation		

[Page 4	Mark Sch	Syllabus Paper	
		Cambridge IGCSE –	ine 2015 0607 42	
6	(a)	150	2	M1 for $\sqrt{120^2 + 90^2}$
	(b)	$\tan^{-1}\frac{90}{120}$ oe	M1	i.e. trig ratio for any appropriate angle
		53.13 or 36.86 to 36.87 or 106.26	A1	or M1 [cos =] $\frac{150^2 + 150^2 - 180^2}{2 \times 150 \times 150}$ A1 0.28 oe
		73.739	A1	
	(c)	25 300 or 25 270 to 25 281	3	M2 for $\frac{73.74}{360} \times \pi \times 150^2 + 2 \times \frac{1}{2} \times 120 \times 90$ oe
				or M1 for $\frac{73.74}{360} \times \pi \times 150^2$ or $2 \times \frac{1}{2} \times 120 \times 90$ oe
	(d)	6.74 to 6.75 or 7	3	M2 for <i>their</i> (c) \times 8 \times 2 \div 60 000 oe
				or M1 for <i>their</i> (c) \times 8 \times 2 \div figs 6 or <i>their</i> (c) \times 8 \div 60 000 or <i>their</i> (c) \times 2 \div 60 000
7	(a)	x = -1 ruled y = 2 ruled	1	
		y = 2x - 3 ruled	2	B1 for line with gradient 2 or <i>y</i> -intercept -3
		3x + 5y = 30 ruled	2	B1 for line with negative gradient through (0, 6) or through (10, 0)
		Correct region clearly indicated cao	1	
	(b) (i)	6.5 to 6.7 cao	1	
	(ii)	7.2 to 7.6 cao	1	
8	(a) (i)	Any counted information	1	e.g. numbers in family, numbers of letters delivered, shoe sizes, marks in a test, number of cats, etc.
	(ii)	Any measured information	1	e.g. lengths, ages, masses, heights
	(b) (i)	160 165	1	
	(ii)	165 170	1	
	(iii)	166	2	M1 for at least 3 midpoints soi
	(iv)	Continuous information oe	1	e.g. lowest/highest anywhere between 150 and 155, using mid-points, grouped data, actual heights unknown, examples of values in an interval

	Page 5	Mark Sch	Syllabus Paper	
		Cambridge IGCSE –	ne 2015 0607 42	
9	(a) (i)	$\frac{4}{10}, \frac{2}{10}, \frac{4}{10}$	1	
		$\frac{4}{10}, \frac{2}{10}, \frac{4}{10}$ $\frac{5}{11}, \frac{2}{11}, \frac{4}{11}$	1	
		$\frac{5}{10}, \frac{2}{10}, \frac{3}{10}$	1	
	(b) (i)	$\frac{4}{121}$ oe	2	M1 for $\frac{2}{11} \times their \frac{2}{11}$
	(ii)	$\frac{32}{110}$ oe	3	M2 for $\frac{5}{11} \times their \frac{4}{10} + \frac{4}{11} \times their \frac{3}{10}$ oe
				or M1 for one of above products without incorrect extras
	(iii)	$\frac{189}{605} \text{ oe}$	3	M2 for $\frac{5}{11} \times their \frac{2}{10} + \frac{2}{11} \times their \frac{5}{11} + \frac{2}{11} \times \frac{4}{11} \times$
				<i>their</i> $\frac{4}{11} + \frac{4}{11} \times their \frac{2}{10}$ oe
				or M1 for 2 of above products or one of $\left(\frac{5}{11} + \frac{4}{11}\right) \times their \frac{2}{10}, \frac{2}{11} \times \left(their \frac{5}{11} + their \frac{4}{11}\right)$
10	(a)	Correct curve with no overlaps at 60 and 240, x intercepts at approximately $-30, 150, 330$	3	
		20 y $(x)=2\tan(x+30)$		
		10- 5- -90 -5- -5- -5- -5- -5- -5- -5- -5		B2 for 'correct' but with overlaps and/or inaccurate intercepts
		-10 -15 -20		B1 for 1 branch correct
	(b)	38.2 or 38.19 to 38.2 218 or 218.1 to 218.2	1 1	
	(c)	$ \begin{array}{l} x = 60 \\ x = 240 \end{array} $	1 1	

	Page 6	Mark Scheme			Syllabus	Paper
L		Cambridge IGCSE –	May/Ju	ne 2015	0607	42
	(d)	<i>their</i> (a) with negative y parts reflected in x-axis	2FT	B1FT for 1 branch correct	ct	
11	(a) (i)	117 or 116.8	4	M2 for sin $[\theta] = \frac{70 \sin 32}{45}$ or M1 for $\frac{\sin [\theta]}{70} = \frac{\sin 22}{45}$ M1 for 180 – their θ	3 <u>5</u> oe	
	(ii)	42.4 or 42.36 to 42.37	4	M2 for $[\cos[\theta]] = \frac{70^2 + 2^2}{2 \times 10^2}$ or M1 for $55^2 = 70^2 + 80^2$ A1 for 0.739 or 0.7388 $\frac{331}{448}$	$x^2 - 2 \times 70 \times 80$	
	(b)	21.1 to 21.3	2FT	M1 for 45sin(145 – <i>their</i>	(a)(i)) oe	
12	(a)	4 nfww	2	B1 for $\frac{6}{4+1}$ oe seen or N	M1 for $5\left(\frac{6}{4x}\right)$	$\left(\frac{1}{1+1}\right) - 2$
	(b) (i)	$\frac{6}{20x-7}$ final answer	2	M1 for $\frac{6}{4(5x-2)+1}$		
	(ii)	$\frac{x+2}{5}$ of final answer	2	M1 for $y + 2 = 5x$ or $x =$ or better	$5y - 2 \text{ or } \frac{y}{5} =$	$=x-\frac{2}{5}$
	(c) (i)	$\frac{1}{x+1}$ final answer	3	M2 for $\frac{5x-2}{(5x-2)(x+1)}$ of or M1 for $\frac{5x-2}{(5x+a)(x+b)}$ or $a+5b=3$ or SC1 for $(5x-2)(x+1)$	$\overline{\mathbf{b}}$ oe where ab	b = −2

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0607	42

		(ii)	$\frac{26x-13}{(4x+1)(5x-2)}$ oe final answer	3	M1 for common denominator $(4x + 1)(5x - 2)$ soi M1 for $6(5x - 2) - (4x + 1)$ oe
13	(a)		ABF = DEF (alternate angles) BAF = EDF (alternate angles) AFB = DFE ([vert] opposite angles)	1+1	One mark for first fully correct and one for second fully correct. or B1 for any 2 pairs of angles <u>identified</u> without a reason or with an incorrect reason
	(b)	(i)	4.8 oe	3	<u>Method</u> 1 Triangles <i>ABF</i> , <i>CEB</i> [where $x = AB$] M2 for $\frac{10}{6} = \frac{8}{x}$ oe or M1 for $\frac{BC}{AF} = \frac{EC}{AB}$ oe <u>Method 2</u> Triangles <i>ABF</i> , <i>DEF</i> [where $x = AB$] M2 for $\frac{8-x}{x} = \frac{4}{6}$ oe or M1 for $\frac{FD}{AF} = \frac{ED}{AB}$ oe <u>Method 3</u> Triangles <i>EFD</i> , <i>EBC</i> [where $y = ED$] M2 for $ED = 3.2$ or M1 for $\frac{BC}{FD} = \frac{EC}{ED} \left[= \frac{10}{4} = \frac{8}{y} \right]$ oe
		(ii)	$\frac{4}{9}$ oe $\frac{4}{30}$ oe	1	
		(iii)	$\frac{4}{30}$ oe	2	M1 for Area of $ABF = \frac{3}{10}$ Area of $ABCD$ or ratio of EFD to $EBC = 4 : 25$ oe soi or correct use of $\frac{1}{2}ab\sin C$ or e.g. $\frac{\frac{1}{2} \times theirED \times 4}{10 \times theirDC}$